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Abstract. A set of vortices in the superconducting system being a two-dimensional region with a boundary
has been considered. Here the system under study is described by the model of the Ginzburg-Landau po-
tential in the dual point. This model predicts that in the bounded superconducting system non-interacting
vortices appear. These vortices make the absolute minima of this potential. It turned out that in the ther-
modynamic equilibrium for the fixed number of vortices, the temperature of the system and the geometry
of the boundary are related to each other. The simultaneous change of the temperature of the system and
of the geometry of the boundary has been investigated under the assumption that the number of vortices
is fixed. In the case of the flat disc the explicit form of the temperature vs. area relation has been obtained
for two different boundary conditions.

PACS. 74.25.Bt Thermodynamic properties – 74.25.Dw Superconductivity phase diagrams

1 Introduction

The term vortex appears in several domains of physics in
two dimensions, e.g. in:

1. superconductivity described by the Ginzburg-Landau
(GL) theory,

2. hydrodynamics,
3. gauge theories on lattice.

In general a vortex is an example of topological de-
fect in the physical system. In the case of two dimensions
the vortex is a zero-dimensional object. In the supercon-
ductors described by the GL theory a vortex is a zero of
the function ψ presenting the order parameter. The free
energy of superconductors has the form:

F [ψ,A, κ] =
∫

Σ

d2x
[
|(∇ − iA)ψ|2

+κ2
(
1 − |ψ|2)2 + 1/2B2

]
,

where Σ is the region occupied by the superconducting
system, κ is a coupling constant and B = εab∂aAb (mag-
netic field), where a, b = 1, 2. In the GL theory the as-
sumption is made that in the spatial infinity the asymp-
totic behavior of ψ is the following:

1. |ψ| → 1,
2. (∂a − iAa)ψ → 0.
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The fields which have the above asymptotic properties
are classified by their integer winding number. The wind-
ing number n of ψ means that the phase of ψ increases
by 2πn when going anticlockwise around the circle situ-
ated at infinity. The second condition on ψ implies that
the magnetic flux is quantized:

∫
Σ

Bd2x = 2πn. (1)

In the case, when the zeros of ψ are isolated, the num-
ber of zeros counted with their multiplicities is also n. In
the vicinity of a zero, which is localized in x0 with the
multiplicity k, the ψ has the form:

ψ (x) � a|x − x0|k.
A zero of the multiplicity 1 is called a vortex and a zero
of multiplicity -1 is called an antivortex.

In the dual point κ = 1/
√

2 the free energy has the
form:

F
[
ψ,A, 1/

√
2
]

=
∫

Σ

d2x

[∣∣∂Aψ
∣∣2 +

1
2
(
B − 1 + |ψ|2)2

]

+
∫

∂Σ

[j + A] · dl, (2)

where:

∂A = ∂ + 1/2iA, A = A1 + iA2 and ∂ = 1/2 (∂1 + i∂2) ,

j = Im (ψ∗∇ψ) − |ψ|2A
and ∂Σ is the boundary of Σ.
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The absolute minimum of F is given by the following
equations called the Bogomolny equations [1] (in the case
when ∂Σ is an empty set):

∂Aψ = 0, (a)

B − 1 + |ψ|2 = 0. (b)

The solution ψ of this system of equations has zeros with
the positive multiplicities (as it follows from Eq. (a)). Thus
in the system there exist only vortices (no antivortices). As
it is well-known, one can eliminate the gauge potential A
from equation (b) by solving equation (a). In this way one
obtains the equation for |ψ|2:

� ln |ψ|2 + 2
(|ψ|2 − 1

)
= 4π

n∑
i=1

δ (x − xi) , (c)

where xi means the position of i-th vortex and � is the
Laplace operator on Σ. As Taubes showed [2] the solu-
tion ψ of equations (a) and (b) exists (modulo gauge trans-
formation) with zeros at n arbitrary points of Σ (in this
case Σ is a plane). Thus the value of F is:

F [ψv,A] =
∫

Σ

BdS,

where ψv is the solution of both the equation (a) and equa-
tion (b). Using the quantization condition on the magnetic
field B (Eq. (1)) one can see that the free energy for the
system, where n vortices exist, is equal to:

F [ψv,A] = 2πn.

The quantization condition expresses the topological
properties of the system described by the line bundle L
over manifold Σ with the curvature form B (B is the mag-
netic field). The F is invariant under the unitary gauge
group U (1) . Thus the vortices which are related by this
gauge group are physically equivalent because they have
the same free energy. The set of inequivalent vortices forms
a space called the moduli space M(n):

M (n) ={
(ψ,A) : ∂Aψ=0 , B − 1 + |ψ|2 =0 and

∫
Σ BdS=2πn

}
{u : Σ → U (1)} .

The moduli space M (n) is isomorphic with the space

n︷ ︸︸ ︷
Σ × ...×Σ

Π (n)
,

where Π (n) is the permutation group acting on the n
zeros of ψ.

In the case when the boundary of Σ is not empty the
last term in (2) has the form:

∫
∂Σ

[j + A] · dl =
∫

Σ

[ψ∗ω + d (µ (ψ)A)] , (3)

where ω is a symplectic form on the complex space C1:

ω =
i

2
dz ∧ dz,

µ (ψ) = 1−|ψ|2 and ψ is a mapping of Σ into C1; in other
words ψ is a section of the line bundle L over Σ. The gen-
eral form of the energy functionals similar to F was con-
sidered in [3] where it is shown a.o. that the equation (3)
is a topological invariant. Under a gauge transformation

ψ → eiλψ,

A → A+ idλ,

the free energy (2) remains invariant. Under diffeomor-
phisms which conserve the area of Σ equation (2) also
remains invariant.

2 Vortices in the finite size systems

As it is well-known, vortices do not interact with each
other at the dual point of a finite superconducting system
with boundaries. They are being repelled from the bound-
aries by the edge currents. At the thermodynamic equilib-
rium all vortices collapse into a one vortex state. The free
energy FS for such a kind of system has been calculated
in [4]. The value of FS for n vortices is equal to:

FS=2πn+
∮

∂Σ

f (kg) dl, (4)

where f (kg) is the function of the geodesic curvature of
the boundary ∂Σ.

Let us consider the thermodynamic equilibrium of a
finite size bounded system of vortices. Then the free en-
ergy FV for this system is:

FV =U − TS,

where U is the internal energy, S is entropy and T is tem-
perature of the system in the equilibrium. Thus the set
of vortices in the superconducting system will be in the
thermodynamic equilibrium if:

FS = FV .

It means that:

2πn+
∮

∂Σ

f (kg) dl = U − TS. (5)

To determine U the model, in which each vortex is a source
of the quantum magnetic flux and all the vortices form the
Coulomb gas, is used. Thus U assumes the form:

U = 2πJ
∑
x,x′

n(x)G (x − x′)n (x′) ,

where n (x) is a wave function of a vortex in the position x,
G (x − x′) is given by:

G (x − x′) =
1

(2π)2

∫ π

−π

∫ π

−π

dk1dk2
eik(x−x′)

2 − 2 cos k1 − 2 cosk2
.
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In the case under consideration all vortices are localized
in the geometric center of Σ and the internal energy is
equal to:

U = 2πJG (0)n2

(n is the number of vortices in the system). 2πJG (0) is
the energy of a vortex. This energy is estimated as:

2πJG (0) = πJ ln (Rs/a) ,

where Rs is the linear size of the sample and a is a cut-
off parameter which makes the smallest scale where the
continuous model is valid. The entropy S for this system
is given by the logarithm of the volume of the moduli
space M (n). Such a volume was derived in [5] for the sys-
tems existing on any Riemannian surface with the genus g
without boundaries. For the system with the boundary
the solutions of equation (c) exist only for correctly cho-
sen boundary conditions. Thus the moduli space and its
volume depend on these boundary conditions. We assume
that such boundary conditions exist (e.g. the Dirichlet
boundary conditions in [6]). A boundary ∂Mb (n) of the
moduli space Mb (n) of n vortices on two-dimensional sur-
face Σ has the form:

∂Mb (n) =
{n · (∪iCi)}

n−1

×
︷ ︸︸ ︷
Σ × ...×Σ

Π (n)
,

where ∪iCi is the boundary of Σ. In the case of the col-
lapsing n vortices the moduli space is one-dimensional (the
complex dimension) and the volume of the moduli space
assumes the form [5]:

vol (M (n)) = nA+ n

∫
Σ

db, (6)

where 2-form db is given by:

db = (∂jbi − ∂ibj) dxi ∧ dxj .

The functions bi are determined from equation (c). For
boundless surface Σ with genus g the integral from db
is given in [5] and is equal to 4πn (g − 1) (in [5] is also
considered a more general case when the vortices do not
collapse). Thus the volume of the moduli space in the
boundless case has the form:

vol (M) = An− 4πn2 (1 − g) .

If surface Σ has the boundary ∂Σ, then the equation (6)
assumes the following form:

vol (Mb (n)) = nA+ n

∫
∂Σ

bidx
i,

where the functions bi depend on the boundary conditions
and on the relative positions of the vortices. These posi-
tions are collectively denoted as ρ. In [6] is considered the
case of a one vortex on a disk with Dirichlet boundary con-
ditions: |ψ|2 = 1 on ∂Σ. The volume of the moduli space

for such a system depends on the distance ε between the
boundary and localization of the vortex:

vol (Mb (1)) = A+ 2πR/ε, (7)

where A is the area of the disk with radius R.
Thus the volume of the moduli space, for any boundary

conditions, is represented as follows:

vol (Mb (n)) = nA+ nZ (ρ, ∂Σ) ,

where
Z (ρ, ∂Σ) =

∫
∂Σ

bidx
i. (8)

In general,Z (ρ, ∂Σ) depends on: the number of vortices n,
the parameters describing the boundary (these parameters
are represented also by ∂Σ) and on the boundary condi-
tions put on ψ. In this way one can see that the entropy
for the system with boundary is:

S = k ln [An+ nZ (ρ, ∂Σ)] , (9)

where A is the area of Σ. One can now express the equa-
tion (5) as follows:

2πn+
∮

∂Σ

f (kg) dl = 2πJG (0)n2

− kT ln [An+ nZ (ρ, ∂Σ)] . (10)

Thus in the thermodynamic equilibrium of the supercon-
ducting system the three parameters: the number of vor-
tices n, the temperature T and the form of the bound-
ary ∂Σ turned out to be related to each other.

Let us introduce the following function G:

G (n, T ; ∂Σ) = 2πn− 2πJG (0)n2 +
∮

∂Σ

f (kg) dl

+ kT ln [An+ nZ (ρ, ∂Σ)] .

One can then say that the set of vortices appearing in the
superconducting system is in thermodynamic equilibrium
if the function G vanishes:

G (n, T ; ∂Σ) = 0. (11)

In the next section we consider how the change of the
boundary leads to the change of temperature of the system
when the above condition is obeyed (what means that the
system remains in the superconducting state).

3 Critical temperatures and the temperature
vs. area relation

Let us consider the case when FS is equal to zero. Thus
the equation (5) leads to the condition that:

FV = U − TS = 0.

From this equation one finds how does the temperature de-
pend on the number of vortices. If the explicit form of the
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function f in equation (4) is known, then one can in prin-
ciple change the shape of the boundary (in other words:
of the geodesic curvature) in such a way that the free en-
ergy FS vanishes. It is the way to determine the number
of vortices in the system. If FV = 0 then the temperature
of the set of vortices is equal to the critical temperature Tc

(note that the superconducting critical temperature is de-
noted by TS). Then Tc is expressed by:

Tc(n,A) =
2πJG (0)n2

k ln [An+ nZ (ρ, ∂Σ)]
. (12)

From equation (9) it follows that n should be such that:
An + nZ (ρ, ∂Σ) > 0. For the boundless case [5], i.e. for
∂Σ = ∅,

Z (r,∅) = 4πn (g − 1)

for g ≥ 1, the number n of vortices is unbounded since
the argument of the above logarithm is always positive
(An > 0). For g = 0 ( Σ is a 2-dimensional sphere ) this
condition becomes the Bradlow inequality [7]: 4πn ≤ A.
Thus the number of vortices for T = Tc is related to the
shape of the boundary of Σ by (see Eq. (5)):

2πn = −
∮

∂Σ

f (kg) dl. (13)

Since in the system only vortices (but not antivortices)
exist, the above condition means that:

∮
∂Σ

f (kg) < 0.

In the case when kg is constant the above inequality re-
duces to:

f (kg) < 0.

It is easy to see that for a temperature T below Tc(n,A)
there exist exactly n vortices for fixed both the area A
and the shape of boundary, because the sequence of crit-
ical temperatures Tc (n,A) increases with n. The latter
relation is expressed by the following inequality:

Tc (n+ 1, A) > Tc (n,A) .

It means physically that the magnetic field inside the sys-
tem increases destroying the superconducting phase. This
effect is equivalent to the increase of temperature of the
system. The sequence {Tc (n,A)} is upper bounded by the
critical temperature of the superconducting phase transi-
tion TS:

TS ≥ ... ≥ Tc (n+ 1, A) ≥ Tc (n,A) ≥ ...

If these critical temperatures become higher than TS then
the superconducting phase vanishes. Thus the maximal
number of vortices which exist in the superconducting
phase can be found from the following equation:

Tc (nmax, A) = TS, (14)

where nmax is the maximal number of vortices in the su-
perconducting system. Thus the equation (12) assumes
the form:

An+ nZ (r, ∂Σ) = exp
[
βS2πJG (0)n2

]
,

where βS = 1/kTS. Solving the above equation with re-
spect to n and using equation (13) one obtains the follow-
ing relation:

nmax (TS) = −
∮

∂Σ

f (kg) dl, (15)

which shows that number of vortices nmax is related to TS

and the shape of the boundary of the region in which the
system is placed.

In order to estimate the change temperature T of
the system with the change of the boundary one has to
know the explicit form of the functionf . Comparing equa-
tions (2), (3) and (4) one can notice that:

f (kg) =
(
1 − |ψ|2) Ai

·
x

i

∣∣∣ ·x
∣∣∣ , (16)

where ψ and A are solutions of equations (a) and (b).
These solutions are restricted to the boundary ∂Σ, which
is parameterized by xi = xi (s), i = 1, 2 and s is a pa-
rameter. The unit vector t tangent to ∂Σ is:

t =
1∣∣∣ ·x
∣∣∣
(

·
x

1
,
·
x

2
)
.

Thus the function f depends on the tangent componentAt

of the vector field A:

f (kg) =
(
1 − |ψ|2)At,

where: At = A · t. In this way the function G takes the
form:

G (n, T ; ∂Σ) = 2πn− 2πJG (0)n2

+
∮

∂Σ

(
1 − |ψ|2)Atdl + kT ln [An+ nZ (ρ, ∂Σ)] (17)

Let us estimate the change of the function G under the
deformation of the boundary ∂Σ. In this aim we consider
the variation of the integral I:

I =
∮

∂Σ

θidx
i,

where:
θi =

(
1 − |ψ|2)Ai.

Let the deformation of ∂Σ be given by a vector field X :

X = X i (x)
∂

∂xi
.
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Thus the variation of I under X has the form:

δXI =
∮

∂Σ

LX

(
θidx

i
)

=
∮

∂Σ

[
X i (x)Fijdx

j + d
(
X iθi

)]
(18)

where:
Fij = ∂iθj − ∂jθi,

and LX is a Lie derivative along the vector field X . In two
dimensions δI has the form:

δXI =
∮

∂Σ

[
FX× dx + d

(
X iθi

)]
, (19)

where: F = ∂1θ2 − ∂2θ1. For a given parameterization
x = x (t) of the boundary the first term in equation (19)
can be reformulated as follows:∮

∂Σ

FX× ·
xdt.

It means that the perpendicular component Xv of the vec-
tor X with respect to the tangent vector

·
x gives non-zero

contribution to the integral. Let us decompose the vec-
tor X into the orthonormal basis of two vectors t and n,
the former vector being tangent and the latter being nor-
mal to the boundary:

X =Xht+Xvn.

The vectors t and n are related with each other as follows:

dt
dt

= κn,

where κ is the curvature of the boundary and t =
·
x/
∣∣∣ ·x
∣∣∣.

In this way one obtains that:∮
∂Σ

FX× ·
xdt =

∮
∂Σ

F (X · n)
∣∣∣ ·x
∣∣∣ dt.

The second term in (19) can be interpreted as a change in
the number of zeros and poles of the function exp

(
X iθi

)
.

These zeros and poles are related both to the creation or
annihilation of vortices in the system when the boundary
changes.

For the case when Σ is a disc with a radius R on a
2-dimensional plane R2 the boundary is a circle with the
radius R. The entropy of the system in this case (g = 0)
is equal to:

S = k ln [An+ nZ (ρ, ∂Σ)] ,

where A = πR2. The function Z (see Eq. (8)) in the polar
coordinates (r, ϕ) takes the form:

Z (ρ, ∂Σ) = R

∫ 2π

0

bϕ (R, t; ρ) dt. (20)

For this system the orthonormal basis is given by:

n =
∂

∂r
,

t =
∂

r∂ϕ
.

Any vector field X is expressed in the above basis as
follows:

X = ε
∂

∂r
+ δ

∂

r∂ϕ
,

where ε is related to the change of the radius of the disc
and δ is related to the reparametrization of the circle.
Next we will consider the coefficients ε and δ which are
independent of the points x of the disk. Since

∣∣∣ ·x
∣∣∣ = R the

variation of the integral has the form:
∮

∂Σ

X · n
∣∣∣ ·x
∣∣∣Fdt = εR

∮
∂Σ

Fdt.

Thus δXI is equal to:

δXI = εR

∮
∂Σ

Fdt+ ε (θr (2π) − θr (0))

+ δ (θϕ (2π) − θϕ (0)) .

In the case when θr and θϕ are periodic (which means
that no vortex appeared or vanished in the deformation
process) the δI reduces to:

δXI = εR

∮
∂Σ

Fdt.

The coefficient εR is proportional to the change of the
area δXA:

δXA = 2πεR.

Under the deformation of the boundary δ∂Σ and the
change of the temperature δT the function G takes the
form:

G (n, T + δT ; ∂Σ + δ∂Σ) = G (n, T ; ∂Σ)
+ δT δTG (n, T ; ∂Σ) + (δ∂Σ) δ∂ΣG (n, T ; ∂Σ) ,

where δ∂Σ = δA/2π. The system stays in the supercon-
ducting phase if:

G (n, T + δT ; ∂Σ + δ∂Σ) = 0. (21)

Because the entropy depends on the area of the disk and
the parameters related to the boundary one obtains the
following variations of G with respect to the temperature T
and the vector field X :

δTG (n, T ; ∂Σ) = SδT,

δ∂ΣG (n, T ; ∂Σ) = T

(
∂S

∂A
δXA+

∂S

∂Z
δXZ

)
+ δXI,

where S = k ln (An+ nZ (r, ∂Σ)). Since G (n, T ; ∂Σ) = 0
one obtains from equation (21) the following relation:

δTS + T

(
∂S

∂A
δXA+

∂S

∂Z
δXZ

)
+ δXI = 0. (22)

The variation δXZ (which is analogously obtained as δXI)
is equal to:

δXZ =
∮

∂Σ

[
uX × dx + d

(
X ibi

)]
,
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where u = ∂1b2 − ∂2b1. Thus:

δXZ = εR

∮
∂Σ

udt+ ε (br (2π) − br (0))

+ δ (bϕ (2π) − bϕ (0)) .

Assuming periodicity functions br and bϕ on the boundary
we obtain:

δXZ = εR

∮
∂Σ

udt.

In the polar coordinates (r, ϕ) the functions F and u have
the form:

F =
1
r

[
∂ (rθϕ)
∂r

− ∂θr

∂ϕ

]
,

u =
1
r

[
∂ (rbϕ)
∂r

− ∂br
∂ϕ

]
.

Integrating F and u over the circle ∂Σone obtains:∮
∂Σ

Fdt =
1
R

∂

∂r

[
r

∫ 2π

0

θϕ (r, t) dt
]
|r=R, (23)

∮
∂Σ

udt =
1
R

∂

∂r

[
r

∫ 2π

0

bϕ (r, t) dt
]
|r=R, (24)

where
θϕ (r, t) =

(
1 − |ψ (r, t) |2)Aϕ (r, t) .

Therefore, from equation (22) one obtains the following
relation:

δTS + T

(
∂S

∂A
+

1
2π

∂S

∂Z
K

)
δA+

1
2π
WδA = 0,

where:

K (A) =
1
R

∂

∂r

[
r

∫ 2π

0

bϕ (r, t) dt
]
|r=R,

W (A) =
1
R

∂

∂r

[
r

∫ 2π

0

θϕ (r, t) dt
]
|r=R.

Note that in the above formulas the relation δA/2π = εR
was used. In this way the following differential equation
on T has been obtained:

dT

dA
S + T

dS

dA
+ T

1
2π

∂S

∂Z
K +

1
2π
W (A) = 0 (25)

with the initial condition T (A0) = T0, where T0 is the
initial temperature for the area A0. The equation (25)
can be rewritten as follows:

d (TS)
dA

+ T
1
2π

∂S

∂Z
K +

1
2π
W (A) = 0. (26)

The general solution of equation (26) has the form:

T (A) = T (A0)
S (A0)
S (A)

exp

(
−
∫ A

A0

∂ lnS
∂Z

K (a) da

)

×
[
1 − 1

2πT (A0)S (A0)

×
∫ A

A0

exp
(∫ a

A0

∂ lnS
∂Z

K (c) dc
)
W (a) da

]
. (27)

Note that in the case under consideration the following
relation is valid:

√
A/π = R. From equation (20) one can

see that:

K (A) =
1
R

∂Z

∂R
.

Let us consider the boundary conditions that lead to Z,
which is independent of R. Such boundary conditions are
realized when in equation (20) the angular part of the
1-form b has the form:

bϕ (R, t; ρ) =
1
R
b̃ϕ (t; ρ) .

We put the following boundary conditions on ln |ψ|2:

∂t ln |ψ|2 |r=R = 0.

In the case considered all the vortices are localized in the
center of the disk. Thus near this center the following ex-
pansion [5] in the polar coordinates r, t on the disc is
valid:

ln |ψ|2 = ln r + a+ rbϕ (r, t; ρ) + ...,

(we use the same polar coordinates both on the moduli
space of vortices and on the disk). The boundary condi-
tions give the following restriction on bϕ:

bϕ (R, t; ρ) = b̂ϕ (R; ρ) .

Thus bϕ should has the form:

bϕ (R, t; ρ) =
1
R
b̃ϕ (ρ) .

It means that b̃ϕ depends only on ρ (for r = R). In this
case K = 0. Thus equation (27) has the form:

T (A) =
1

k ln [An+ Zn]

×
(
T0k ln [A0n+ Zn] − 1

2π

∫ A

A0

W (a) da

)
. (28)

Taking into account the equation (b) one obtains that:

W (A) =
1
R

∂

∂R
[RB (R)J (R)] |

R=
√

A/π
,

where:

J(R) =
∫ 2π

0

Aϕ (R, t) dt.

In the disc case the area element is: da = 2πrdr. Thus
equation (28) has the form:

T (A) =
1

k ln [An+ Zn]

×
(
T0k ln [A0n+ Zn] −

∫ R

R0

1
r

∂

∂r
[rB (r) J (r)] rdr

)
.
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T (A) = T (A0)
S (A0)

S (A)
exp


2nρ

∫ √
A/π

√
A0/π

dr
1

(r2 (r − ρ) + 2rn) ln

(
nπr2 +

2πrn2

r − ρ

)

 .

The integration in the last formula is simple, because the
function under the integral makes a full derivative. Thus
one obtains:

T (A) =
1

k ln [An+ Zn]
[T0k ln [A0n+ Zn]

− (RB (R)J (R) −R0B (R0)J (R0))] .

Let us estimate the last formula in the case of the angular
gauge field Aϕ, which scales like Aϕ ∼ 1/r. Hence the
gauge strength field B scales like 1/r2. Thus:

RB (R)J (R) ∼ R
1
R2

1
R

∼ 1/A,

and:

T (A) = T0
ln [A0n+ Zn]
ln [An+ Zn]

− 1
k ln [An+ Zn]

(1/A− 1/A0) .

(29)
Thus the law is obtained of the change of temperature

of the set of vortices with the change of the area for the
superconducting phase.

For the Dirichlet boundary condition, |ψ| = 1 on the
boundary, one obtains:

W = 0

and (from Eq. (7))

Z =
2πRn
R− ρ

where ρ is a distance between the center of the disk and
the position of the collapsed vortices. Let us consider that
the vortices collapse in the center of the disk which means
that ρ = 0. Thus the entropy is:

S = ln
(
nA+

2πRn2

R− ρ

)
,

and:

K = − 2πρn
(R− ρ)R

.

Equation (27) assumes the form:

See the equation above.

For ρ = 0 one obtains a simple relation:

T (A) = T (A0)
ln
(
nA0 + 2πn2

)
ln (nA+ 2πn2)

. (30)

Fig. 1. Temperature T vs. area A. Dotted line corresponds
to T = 1, solid line corresponds to equation (29) for n = 4,
dashed line corresponds to equation (30) for n = 4.

This relation means that the product of the temperature T
and the entropy S is constant when the area A changes:

T (A)S (A) = const.

One can then see that the different boundary conditions
lead to the different relations between temperature and en-
tropy. This conclusion reflects the fact that the conditions
on the boundary of the system influence the system in the
bulk. Let us compare the diagrams based on equation (29)
and equation (30) and scaled by T (A0) = 1 and k = 1.
In equation (29) we assume that Z is proportional to n;
note that the proportionality coefficient has been chosen
in such a way that it agrees with the sphere case:

Z = −4πn.

Let us assume that the number n of vortices is equal to 4.
From the Bradlow inequality one obtains the constraint
on A: A > 4 × 4π = 50. 265. Let us choose for simplicity
that A0 = 51.

One can see from Figure 1 that for the fixed number
of vortices the T vs. A relationship strongly depends on
the boundary conditions.

Figure 2 presents T (A) for one vortex (n = 1). As it
follows from the Bradlow inequality, A > 4π = 12. 566.
Therefore the initial value of the area is chosen as before:
A0 = 51, T (A0) = 1.

As it follows from the comparison of Figure 1 and Fig-
ure 2 the lower the number n of vortices the lower the
sensitivity of the area dependence of temperature on the
boundary conditions.
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Fig. 2. Temperature T vs. area A. Dotted line corresponds
to T = 1, solid line corresponds to equation (29) for n = 1,
dashed line corresponds to equation (30) for n = 1.

4 Conclusions

A sequence of critical temperatures related to the number
of vortices which appear at the dual point of a supercon-
ductor has been obtained. This sequence is limited from
the top by the temperature of the superconducting phase
transition. Applying the latter condition one can evaluate
the maximal number of vortices existing in the supercon-
ducting phase. Equation (27) gives the explicit relation
between the area of a disc and the temperature of the
two-dimensional system. This relation strongly depends
on the boundary conditions put on ψ, since solutions of
the equation (c) exist only for the appropriate boundary
value problems (bvp). Moreover the entropy of the system
depends on bvp and the selection of bvp is crucial for the
behavior of the system. The Dirichlet boundary condition
on ψ has been considered in [6]. The study of the other bvp
is also interesting, e.g. the Neumann or mixed boundary
value problems.

It is interesting to investigate the bounded two-
dimensional superconducting systems on the surfaces with
the constant non-zero curvature, e.g. on a sphere which
has the positive curvature and on a hyperbolic plane which
has the negative curvature. In these cases one should have
obtained the analogous equations to equation (27). In the
sphere case when the system is bounded by a circle laying
on this sphere the dependence of the temperature on the
area should be similar as in the flat case considered above.
In the hyperbolic plane case we assume that the vortices
move on the geodesics. From the negative constant curva-
ture of the hyperbolic plane it follows that the two vor-
tices, which are close to each other at the beginning, run
after a finite time far away from each other. However these
vortices can not reach the boundary itself because of the
repulsive edge currents appearing on it. Finally they form
near the boundary a structure which could present a kind
of the image of the boundary. In order to proof the above
hypothesis further investigations are needed.

We thank Professor N.S. Manton for pointing to the paper by
Nasir [6].
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